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NOMENCLATURE 

constant; 
layer half depth; 
constants; 
constant; 
exponent: 
functions; 
thermal conductivity; 
heat flux; 
correlation coefficient; 
mean temperature; 
non-dimensional mean temperature; 
non-dimensional mean temperature; 
vertical coordinate; 
non-dimensional coordinate; 
non-dimensional coordinate; 
temperature difference across layer; 
conduction layer thickness; 
Nusselt number; 
Rayleigh number. 

INTRODUCTION 

THE PURPOSE of this note is to demonstrate the existence 
of a logarithmic region in the mean temperature profile of 
natural convection thermal turbulence. The flow under 
consideration is generated between parallel horizontal sur- 
faces by uniformly heating the lower boundary and uni- 
formly cooling the upper boundary so as to establish a 
statistically steady turbulence having no mean velocity. 
Many experiments have investigated thermal turbulence, 
and mean temperature profiles have been reported in [l-4] 
and other papers. Formulas for the profile have been pro- 
posed by Priestly [S], Malkus [6], Kraichnan [7], and 
Howard [S]. Each suggested power laws of the form 

Tp = CZD, (1) 
where 

T = T(Z) - T(e) 
P 

AT/2 

and 2 is the vertical distance from the boundary. The 
exponent D has been predicted to be either -l/3 or - 1 
depending in the fluid and/or region of the profile. 

ANALYSIS 

The following argument for the mean temperature profile 
in thermal turbulence is based on the derivation presented 
by Millikan [9] for the mean velocity profile in turbulent 
pipe flow. Consider a fluid layer of thickness 2a with the 
origin at the lower surface. By the definition of the Nusselt 
number one has 

kAT 
q= Nulu. 

*Present address: Oak Ridge National Laboratory, Post 
Office Box Y, Oak Ridge, Tennessee 37830, U.S.A. 

Experiments [l-4] show that in thermal turbulence most 
of the temperature drop occurs in conduction layers of 
thickness 6r near the upper and lower surfaces 

It follows that 

kAT 

q=26,. 

6,=&. 

Near the wall, hT is the characteristic length scale of the 
mean temperature profile. Therefore 

r, = .f, (Z+ 1 

dT, 1 ds, _=-__ 
dZ 6,dZ+ 

(3) 

where 

and 

z+=; 
T 

T 

L 
= T(O)- TV+) 

AT 

In the core region a is the appropriate scale. Therefore 

TL = h(Z) 

dT, 1 dfz _=-- 
dZ ad2 

where 

z=Z. 
a 

Assuming that as Ra and Nu become very large there exists 
an overlap region where (3) and (4) are both valid, they can 
be equated to yield 

z dfi,&!!i,* 
+ dZ+ d2 

In equation (5) the variables have been separated. Integration 
produces 

T,(Z+) = AIn(Z+)+B, (6) 

T,(z) = A in(Z) + B2. (7) 

An obvious transformation leads to a logarithmic law 
near the upper boundary. 

If this argument is valid, (6) and (7) should hold in the 
same regions: near, but not adjacent to the horizontal 
boundaries in highly turbulent natural convection. By 
equating (6) and (7) in their region of common validity, the 
relationship between B1 and Bz is found to be 

B2 = B1 + A ln(Nu). (8) 

The assumption that 6r and a are the only relevant length 
scales for the mean temperature profile is crucial to this 
development. If a mean flow were present there would be 
an additional scale-the viscous sublayer thickness-and 
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Table 1. Comparison of logarithmic and power law fits 

Range of fit Logarithmic law Power law 
Aspect 

Set. Ref. Fluid Ra ratio fromZ+= toZ+= r A Bl r D 

1 

2’ 

3 
4 
5 
6 

Cl1 
[II 

[:I 
3 

E3 4 

air 

air 

air 
air 
air 

water 

8.9 x 10s 5 2.2 5.38 0.9967 Q0258 0.4500 - 0.9743 - 1.672 
9 x lo6 

to 2 x lo* 2and 1 2.0 4.05 0.9914 0.0347 0.4320 -0.9871 - 1.134 

7.8 x lo7 2.7 1.86 4.62 09950 C-0544 04006 - 09920 - 1,438 
10’ 5.2 2.56 5.84 09961 0.0296 04410 - 0.9920 - 1.849 

6.3 x lo5 9.5 1.15 2.88 0.9959 0.067 0.432 -0.8971 -4.78 
1.86 x 10’ 1.2 0459 1.11 0.9996 0.225 0.376 - 0.9940 - 1.22 

*Data was digitized from a smooth curve which fit several experimental runs. 
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FIG. 1. Comparison of logarithmic mean temperature law 
with data. 

this argument would not apply. If the mean flow is sufficiently 
strong, the conduction layer thickness is no longer im- 
portant, and the forced convection case occurs. It is 
remarkable that in certain cases of forced convection, the 
mean temperature follows another logarithmic law [lo]. 

A modification of the similarity argument used by Landau 
and Lifshitz [ll] to derive the logarithmic velocity profile 
also applies to the present case. 

COMPARISON WITH EXPERIMENTS 

In order to assess the validity of the logarithmic law (6), 
data were digitized from those published graphs which were 
detailed enough to reveal a log region. When possible, 
measured data points were chosen; in some cases points 
were randomly selected from smooth curves. Six sets of data 
were examined. Table 1 shows the results obtained by fitting 
each set with logarithmic and power laws by the method of 
least squares. In every case there is a region for which the 
log law is a better representation than any power law. 
Furthermore, the best fit power law is never in accord with 
any of the theories. Compared to - l/3 or - 1 laws, the 
advantage of the log law would be more dramatic. Figure 1 
shows the best fit log laws for Sets 1,2, and 3. 

At present there is not sufficient data to determine 
universal values for A, B1, and the limits of the log region. 
Sets l-5 all deal with air, but the relatively low Rayleigh 
numbers and aspect ratios (minimum horizontal dimension 
divided by depth) probably account for the scatter in these 
values. In particular, at higher Rayleigh numbers the extent 
of the log region should be greater. 

Set 6, which is for water, has values of A, B1, and range 
of fit which are quite different from those for air. This is 
probably a Prandtl number effect, but more data will be 
needed to unravel its nature. 

Thomas and Townsend [12] in 1957 suggested that the 
existence of a log region in the temperature profile was 
evidence of a strong mean flow. They obtained a highly 
asymmetric profile in air for Ra = 6.75 x 10’ and aspect 
ratio = 5.1. Near the boundaries they detected logarithmic 
regions which they attributed to fully developed forced 
convection thermal boundary layers. This would imply a 
Reynolds number of at least 4 x 10’ [13]. Assuming that 
the characteristic length is the width of the apparatus 
(4Ocm) and that the mean air temperature was 3o”C, the 
required mean velocity would be 16OOcm/s. It is certain 
that this did not occur. Moreover, Thomas and Townsend’s 
log region lies far from that of other experiments. Therefore 
it seems that their result was anomalous and that the 
existence of a logarithmic region is characteristic of thermal 
turbulence. 
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